ImpParser: Coqでの字句解析と構文解析
Imp.vでのImp言語の開発は、具象構文の問題を完全に無視しています。
つまり、プログラマが書く文字列をデータ型aexp、bexp、comで定義された抽象構文木にどうやって変換するか、という問題です。
この章では、Coqの関数プログラミング機能によって簡単な字句解析器と構文解析器(パーサ)を構築することで、この残っている問題を終わらせます。
ここでやることは、細部まで理解する必要はありません(説明はかなり少なく、練習問題もありません。)
一番のポイントは単に、それができることを示すことです。
コードを眺めてみて欲しいところです。ほとんどの部分はそれほど複雑ではありません。
ただパーサはある「モナド的」プログラミング法をしているので、理解するのにちょっと骨が折れるかもしれません。
もっとも、ほとんどの読者は、一番最後の「例」の場所まで流し読みしたくなるでしょう。
Set Warnings "-notation-overridden,-parsing".
From Coq Require Import Strings.String.
From Coq Require Import Strings.Ascii.
From Coq Require Import Arith.Arith.
From Coq Require Import Init.Nat.
From Coq Require Import Arith.EqNat.
From Coq Require Import Lists.List.
Import ListNotations.
From LF Require Import Maps Imp.
Definition isWhite (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (orb (n =? 32)
(n =? 9))
(orb (n =? 10)
(n =? 13)).
Notation "x '<=?' y" := (x <=? y)
(at level 70, no associativity) : nat_scope.
Definition isLowerAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (97 <=? n) (n <=? 122).
Definition isAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (andb (65 <=? n) (n <=? 90))
(andb (97 <=? n) (n <=? 122)).
Definition isDigit (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (48 <=? n) (n <=? 57).
Inductive chartype := white | alpha | digit | other.
Definition classifyChar (c : ascii) : chartype :=
if isWhite c then
white
else if isAlpha c then
alpha
else if isDigit c then
digit
else
other.
Fixpoint list_of_string (s : string) : list ascii :=
match s with
| EmptyString => []
| String c s => c :: (list_of_string s)
end.
Fixpoint string_of_list (xs : list ascii) : string :=
fold_right String EmptyString xs.
Definition token := string.
Fixpoint tokenize_helper (cls : chartype) (acc xs : list ascii)
: list (list ascii) :=
let tk := match acc with [] => [] | _::_ => [rev acc] end in
match xs with
| [] => tk
| (x::xs') =>
match cls, classifyChar x, x with
| _, _, "(" =>
tk ++ ["("]::(tokenize_helper other [] xs')
| _, _, ")" =>
tk ++ [")"]::(tokenize_helper other [] xs')
| _, white, _ =>
tk ++ (tokenize_helper white [] xs')
| alpha,alpha,x =>
tokenize_helper alpha (x::acc) xs'
| digit,digit,x =>
tokenize_helper digit (x::acc) xs'
| other,other,x =>
tokenize_helper other (x::acc) xs'
| _,tp,x =>
tk ++ (tokenize_helper tp [x] xs')
end
end %char.
Definition tokenize (s : string) : list string :=
map string_of_list (tokenize_helper white [] (list_of_string s)).
Example tokenize_ex1 :
tokenize "abc12=3 223*(3+(a+c))" %string
= ["abc"; "12"; "="; "3"; "223";
"*"; "("; "3"; "+"; "(";
"a"; "+"; "c"; ")"; ")"]%string.
Proof. reflexivity. Qed.
エラーメッセージを付けたoptionです。
Inductive optionE (X:Type) : Type :=
| SomeE (x : X)
| NoneE (s : string).
Arguments SomeE {X}.
Arguments NoneE {X}.
ネストされたoptionEの上のマッチ式をより簡単に書くための構文糖衣。
Notation "' p <- e1 ;; e2"
:= (match e1 with
| SomeE p => e2
| NoneE err => NoneE err
end)
(right associativity, p pattern, at level 60, e1 at next level).
Notation "'TRY' ' p <- e1 ;; e2 'OR' e3"
:= (match e1 with
| SomeE p => e2
| NoneE _ => e3
end)
(right associativity, p pattern,
at level 60, e1 at next level, e2 at next level).
Open Scope string_scope.
Definition parser (T : Type) :=
list token -> optionE (T * list token).
Fixpoint many_helper {T} (p : parser T) acc steps xs :=
match steps, p xs with
| 0, _ =>
NoneE "Too many recursive calls"
| _, NoneE _ =>
SomeE ((rev acc), xs)
| S steps', SomeE (t, xs') =>
many_helper p (t :: acc) steps' xs'
end.
A (step-indexed) parser that expects zero or more ps:
pの前のトークンを設定するパーサ
Definition firstExpect {T} (t : token) (p : parser T)
: parser T :=
fun xs => match xs with
| x::xs' =>
if string_dec x t
then p xs'
else NoneE ("expected '" ++ t ++ "'.")
| [] =>
NoneE ("expected '" ++ t ++ "'.")
end.
特定のトークンを設定するパーサ
識別子
Definition parseIdentifier (xs : list token)
: optionE (string * list token) :=
match xs with
| [] => NoneE "Expected identifier"
| x::xs' =>
if forallb isLowerAlpha (list_of_string x) then
SomeE (x, xs')
else
NoneE ("Illegal identifier:'" ++ x ++ "'")
end.
数値
Definition parseNumber (xs : list token)
: optionE (nat * list token) :=
match xs with
| [] => NoneE "Expected number"
| x::xs' =>
if forallb isDigit (list_of_string x) then
SomeE (fold_left
(fun n d =>
10 * n + (nat_of_ascii d -
nat_of_ascii "0"%char))
(list_of_string x)
0,
xs')
else
NoneE "Expected number"
end.
算術式の構文解析
Fixpoint parsePrimaryExp (steps:nat)
(xs : list token)
: optionE (aexp * list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
TRY ' (i, rest) <- parseIdentifier xs ;;
SomeE (AId i, rest)
OR
TRY ' (n, rest) <- parseNumber xs ;;
SomeE (ANum n, rest)
OR
' (e, rest) <- firstExpect "(" (parseSumExp steps') xs ;;
' (u, rest') <- expect ")" rest ;;
SomeE (e,rest')
end
with parseProductExp (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (e, rest) <- parsePrimaryExp steps' xs ;;
' (es, rest') <- many (firstExpect "*" (parsePrimaryExp steps'))
steps' rest ;;
SomeE (fold_left AMult es e, rest')
end
with parseSumExp (steps:nat) (xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (e, rest) <- parseProductExp steps' xs ;;
' (es, rest') <-
many (fun xs =>
TRY ' (e,rest') <-
firstExpect "+"
(parseProductExp steps') xs ;;
SomeE ( (true, e), rest')
OR
' (e, rest') <-
firstExpect "-"
(parseProductExp steps') xs ;;
SomeE ( (false, e), rest'))
steps' rest ;;
SomeE (fold_left (fun e0 term =>
match term with
| (true, e) => APlus e0 e
| (false, e) => AMinus e0 e
end)
es e,
rest')
end.
Definition parseAExp := parseSumExp.
ブール式の構文解析
Fixpoint parseAtomicExp (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
TRY ' (u,rest) <- expect "true" xs ;;
SomeE (BTrue,rest)
OR
TRY ' (u,rest) <- expect "false" xs ;;
SomeE (BFalse,rest)
OR
TRY ' (e,rest) <- firstExpect "~"
(parseAtomicExp steps')
xs ;;
SomeE (BNot e, rest)
OR
TRY ' (e,rest) <- firstExpect "("
(parseConjunctionExp steps')
xs ;;
' (u,rest') <- expect ")" rest ;;
SomeE (e, rest')
OR
' (e, rest) <- parseProductExp steps' xs ;;
TRY ' (e', rest') <- firstExpect "="
(parseAExp steps') rest ;;
SomeE (BEq e e', rest')
OR
TRY ' (e', rest') <- firstExpect "<="
(parseAExp steps') rest ;;
SomeE (BLe e e', rest')
OR
NoneE "Expected '=' or '<=' after arithmetic expression"
end
with parseConjunctionExp (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (e, rest) <- parseAtomicExp steps' xs ;;
' (es, rest') <- many (firstExpect "&&"
(parseAtomicExp steps'))
steps' rest ;;
SomeE (fold_left BAnd es e, rest')
end.
Definition parseBExp := parseConjunctionExp.
Check parseConjunctionExp.
Definition testParsing {X : Type}
(p : nat ->
list token ->
optionE (X * list token))
(s : string) :=
let t := tokenize s in
p 100 t.
コマンドの構文解析
Fixpoint parseSimpleCommand (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
TRY ' (u, rest) <- expect "SKIP" xs ;;
SomeE (SKIP%imp, rest)
OR
TRY ' (e,rest) <-
firstExpect "TEST"
(parseBExp steps') xs ;;
' (c,rest') <-
firstExpect "THEN"
(parseSequencedCommand steps') rest ;;
' (c',rest'') <-
firstExpect "ELSE"
(parseSequencedCommand steps') rest' ;;
' (tt,rest''') <-
expect "END" rest'' ;;
SomeE(TEST e THEN c ELSE c' FI%imp, rest''')
OR
TRY ' (e,rest) <-
firstExpect "WHILE"
(parseBExp steps') xs ;;
' (c,rest') <-
firstExpect "DO"
(parseSequencedCommand steps') rest ;;
' (u,rest'') <-
expect "END" rest' ;;
SomeE(WHILE e DO c END%imp, rest'')
OR
TRY ' (i, rest) <- parseIdentifier xs ;;
' (e, rest') <- firstExpect "::=" (parseAExp steps') rest ;;
SomeE ((i ::= e)%imp, rest')
OR
NoneE "Expecting a command"
end
with parseSequencedCommand (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (c, rest) <- parseSimpleCommand steps' xs ;;
TRY ' (c', rest') <-
firstExpect ";;"
(parseSequencedCommand steps') rest ;;
SomeE ((c ;; c')%imp, rest')
OR
SomeE (c, rest)
end.
Definition bignumber := 1000.
Definition parse (str : string) : optionE com :=
let tokens := tokenize str in
match parseSequencedCommand bignumber tokens with
| SomeE (c, []) => SomeE c
| SomeE (_, t::_) => NoneE ("Trailing tokens remaining: " ++ t)
| NoneE err => NoneE err
end.
Example eg1 : parse " TEST x = y + 1 + 2 - y * 6 + 3 THEN x ::= x * 1;; y ::= 0 ELSE SKIP END "
=
SomeE (
TEST "x" = "y" + 1 + 2 - "y" * 6 + 3 THEN
"x" ::= "x" * 1;;
"y" ::= 0
ELSE
SKIP
FI)%imp.
Proof. cbv. reflexivity. Qed.
Example eg2 : parse " SKIP;; z::=x*y*(x*x);; WHILE x=x DO TEST (z <= z*z) && ~(x = 2) THEN x ::= z;; y ::= z ELSE SKIP END;; SKIP END;; x::=z "
=
SomeE (
SKIP;;
"z" ::= "x" * "y" * ("x" * "x");;
WHILE "x" = "x" DO
TEST ("z" <= "z" * "z") && ~("x" = 2) THEN
"x" ::= "z";;
"y" ::= "z"
ELSE
SKIP
FI;;
SKIP
END;;
"x" ::= "z")%imp.
Proof. cbv. reflexivity. Qed.